
10-Apr-24—2:29 PM

1University of Florida, EEL 3744 – File 00
© Dr. Eric M. Schwartz

Multitasking

EEL 4744

1
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Menu
• Multi-Tasking

>Using a simple timer 
– Multitasking steps
– Building a Multitasking example Look into my ...

EEL 4744

2
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking: Saving Context
• When any single running process is paused, its 

context must be saved
>Context is the entire state of a process; it must contain 

all of the information necessary to return to the process 
after the interruption

• When a process is resumed, the context is restored; 
thus the only thing that should have changed with 
respect to the process is that time will have 
advanced

1

2



10-Apr-24—2:29 PM

2University of Florida, EEL 3744 – File 00
© Dr. Eric M. Schwartz

Multitasking

EEL 4744

3
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

• When an interrupt occurs 
with MOST processors, 
many items are put on the 
stack
> For example, an advanced 

GCPU would put the following 
on the stack

> Since XMEGA interrupts push 
nothing other than PC onto the 
stack, you would need to do this 
yourself inside the ISR

Multi-Tasking using Timer Interrupt
STATUS

B

A

XH

XL

YL

YH

PCH

PCL
Stack Pointer 
Before Interrupt

Stack Pointer 
After Interrupt

EEL 4744

4
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking

P1: Context for P1 includes

• Process ID or Name

• Starting Address

• Registers A,B,STATUS,X,Y

• Regular Stack Pointer (SP)

• Interrupt Stack

P2: Context for P2 includes

• Process ID or Name

• Starting Address

• Registers A,B,STATUS,X,Y

• Regular Stack Pointer (SP) 

• Interrupt Stack



PN:

•

•

•

•

•

3

4



10-Apr-24—2:29 PM

3University of Florida, EEL 3744 – File 00
© Dr. Eric M. Schwartz

Multitasking

EEL 4744

5
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking
Assume P1 is running and Timer interrupts
• Inside Timer_ISR the stack contains:

STATUS, B, A, X, Y & PC for P1
• Let’s assume Timer_ISR knows that 

PID=1
• Save SP (for P1) into SP1 , i.e., SPSP1

• Then if Timer_ISR wants to go to P2
Let SP  SP2 (SP for P2)
Change PID to correspond to P2

• Timer_ISR clears TimerF
• Return from interrupt

This restores the stack of P2

P1: Context for P1 includes

• Process ID or Name

• Starting Address

• Registers A,B,STATUS,X,Y

• Regular Stack Pointer (SP)

• Interrupt Stack

EEL 4744

6
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking
Now P2 is running and Timer interrupts
• Inside Timer_ISR the stack contains:

STATUS, B, A, X, Y & PC for P2
• Let’s assume Timer_ISR knows that 

PID=2
• Save SP (for P2) into SP2 , i.e., SPSP2

• Then if Timer_ISR wants to go to Pi

Let SP  SPi (SP for Pi)
Change PID to correspond to Pi

• Timer_ISR clears TimerF
• Return from interrupt

This restores the stack of Pi

P2: Context for P2 includes

• Process ID or Name

• Starting Address

• Registers A,B,STATUS,X,Y

• Regular Stack Pointer (SP)

• Interrupt Stack

5

6



10-Apr-24—2:29 PM

4University of Florida, EEL 3744 – File 00
© Dr. Eric M. Schwartz

Multitasking

EEL 4744

7
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking
Assume PN is running & Timer interrupts
• Inside Timer_ISR the stack contains:

STATUS, B, A, X, Y & PC for PN
• Let’s assume Timer_ISR knows that 

PID=n
• Save SP (for PN) into SPN , i.e., SPSPN

• Then if Timer_ISR wants to go back to 
P1

Let SP  SP1 (SP for P1)
Change PID to correspond to P1

• Timer_ISR clears TimerF
• Return from interrupt 

This restores the stack of P1

PN: Context for PN includes

• Process ID or Name

• Starting Address

• Registers A,B,STATUS,X,Y

• Regular Stack Pointer (SP)

• Interrupt Stack

EEL 4744

8
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking

Q: How do we get things started?

A: In the main program:

• Setup Timer interrupt vector

• Setup variables & constants 

• Create a “dummy” stack for each process:
STATUS, B, A, X, Y, & PC (entry point for P1)

• Setup Timer system

• Setup any “global” variables

• Enable interrupts

• Jump to the first process you want to run

P1: Context for P1 includes

• Process ID or Name

• Starting Address

• Registers A,B,STATUS,X,Y

• Regular Stack Pointer (SP) 

• Interrupt Stack

7

8



10-Apr-24—2:29 PM

5University of Florida, EEL 3744 – File 00
© Dr. Eric M. Schwartz

Multitasking

EEL 4744

9
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking
• Multi-Tasking needs to allocate PID (Process ID), 

Stack, and Stack Pointer for each Process. 
Interrupt by Timer
(Save the current
status of PS1 into

Stack1 [automatic])

Return from Interrupt
(Restore the previous

status of PS2 from
Stack2 [automatic])

Update SP1
because PID = 1

Choose PS2 as
the next process

Set PID = 2

Set SP = SP2

Clear Timer Flag

Inside ISRAssume PID = 1
and PS1 is running

with Stack1.

PS2 is running
with Stack2

until the next Timer.

EEL 4744

10
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

Multi-Tasking
• Creating a Multi-Tasking Program

> Outline the steps (with pseudo-code, comments, or flow 
chart)

> Write code with single process (start adding the code)
>Simulate (then emulate) a single process

> Add a second process to verify proper task switching
> Add a third process
> …

9

10



10-Apr-24—2:29 PM

6University of Florida, EEL 3744 – File 00
© Dr. Eric M. Schwartz

Multitasking

EEL 4744

11
University of Florida, EEL 4744 – File 00

© Dr. Eric M. Schwartz

The End!

11


